
Tiled-Table Convention for Compressing FITS Binary Tables
William Pence, NASA/GSFC

Rob Seaman, NOAO
Richard L. White, STScI

Version 2.0
November 21, 2013

1 Overview

This document describes a convention for compressing FITS binary tables that is modeled after
the widely used FITS tiled-image compression method (White et al. 2009). The uncompressed
table may be subdivided into tiles, each containing the same number of rows, then each column of
data within each tile is extracted, compressed, and stored as a variable-length array of bytes in the
output compressed table. Most of the header keywords from the uncompressed table, with only a
few limited exceptions, are copied verbatim to the header of the compressed table. These header
keywords remain uncompressed for efficient access. The compressed table is itself a valid FITS
binary table that contains the same number and order of columns as in the uncompressed table,
and contains one row for each tile of rows in the uncompressed table. All the currently supported
compression algorithms (Rice and 2 variants of Gzip) are lossless, so no information is lost when
the table is compressed.

This convention currently only supports FITS binary tables and cannot be used to compress
FITS ASCII tables.

2 Compression Overview

The procedure for compressing a FITS binary table consists of the following sequence of steps:

A. Divide Table into Tiles (Optional)

In order to limit the amount of data that must be managed at one time, large FITS tables
may be optionally divided into tiles, each containing the same number of rows (except for the
last tile which may contain fewer rows). Each tile of the table is compressed in turn and is
stored in a single row in the output compressed table. There is no fixed upper limit on the
allowed tile size, but for practical purposes, it is recommended that it not exceed 100 MB
so as to not impose too great of a memory resource burden on software that compresses or
uncompresses the table.

B. Decompose each Tile into the Component Columns

FITS binary tables are physically stored in row-by-row sequential order, such that the data
values for the first row in each column are followed by the values in the second row, and so on.
Because adjacent columns in binary tables can contain very non-homogeneous types of data,
it can be challenging to efficiently compress the native stream of bytes in the FITS tables.
For this reason, the table is first decomposed into its component columns, and then each
column of data is compressed separately. This also allows one to choose the most efficient
compression algorithm for each column.

C. Compress Each Column of Data

1



Each column of data is compressed with a suitable compression algorithm. If the table is
divided into tiles, then the same compression algorithm must be applied to a given column
in every tile. In the case of variable-length array columns, (where the data are stored in the
table heap), each individual variable length vector is compressed separately.

D. Store the Compressed Bytes

The compressed stream of bytes for each column is written into the corresponding column in
the output table. The compressed table has exactly the same number and order of columns
as the input table, however the data type of the columns in the output table will all have a
variable-length byte data type, with TFORMn = ’1QB’, which is appropriate for storing the
compressed stream of bytes. Each row in the compressed table corresponds to a tile of rows
in the uncompressed table.

In the case of variable-length array columns, the array of descriptors that point to each com-
pressed variable-length array, as well as the array of descriptors from the input uncompressed
table, are also compressed and written into the corresponding column in the compressed table.
See section 6 for more details.

3 Compression Directive Keywords

The following optional ‘compression directive’ keywords, if present in the header of the table that
is to be compressed, provide guidance to the compression software on how the table should be
compressed. The compression software will attempt to obey these directives, but if that is not
possible, the software may disregard them and use an appropriate alternative.

• FZTILELN The value field of this keyword shall contain an integer that specifies the requested
number of table rows in each tile which are to be compressed as a group.

• FZALGOR The value field of this keyword shall contain a character string giving the mnemonic
name of the algorithm that is requested to be used by default to compress every column in
the table. The current allowed values are GZIP 1, GZIP 2, and RICE 1. The corresponding
algorithms are described in Section 5.

• FZALGn. The value field of these keywords shall contain a character string giving the mnemonic
name of the algorithm that is requested to be used to compress column n of the table. The
current allowed values are the same as for the FZALGOR keyword. The FZALGn keyword takes
precedence over the FZALGOR keyword in determining which algorithm to use for a particular
column if both keywords are present. If the column cannot be compressed with the requested
algorithm (e.g., if it has an inappropriate data type), then a default compression algorithm
will be used instead.

4 Keywords in the Compressed Table

With only a few exceptions, all the keywords from the uncompressed table are copied verbatim,
in order, into the header of the compressed table. The header keywords remain uncompressed
for ease of access. Note in particular that the values of the reserved column descriptor keywords
TTYPEn, TUNITn, TSCALn, TZEROn, TNULLn, TDISPn, and TDIMn, as well as all the column-specific
WCS keywords defined in the FITS standard, have the same values in both the original and in

2



the compressed table, with the understanding that these keywords apply to the uncompressed data
values.

The only keywords that are not copied verbatim from the uncompressed table header to the
compressed table header are the mandatory NAXIS1, NAXIS2, PCOUNT, and TFORMn keywords, and the
optional CHECKSUM, DATASUM, and THEAP keywords. These keywords must necessarily describe the
contents of the compressed table itself. The original values of these keywords in the uncompressed
table are stored in a new set of reserved keywords in the compressed table header. The complete
set of keywords that have a reserved meaning within the header of a tile-compressed binary table
are listed below:

• ZTABLE (required keyword). The value field of this keyword shall contain the logical value T.
This indicates that the FITS binary table extension contains a tile-compressed binary table.

• ZNAXIS1 (required keyword). The value field of this keyword shall contain an integer that
gives the value of the NAXIS1 keyword in the original uncompressed FITS table header. This
represents the width in bytes of each row in the uncompressed table.

• ZNAXIS2 (required keyword). The value field of this keyword shall contain an integer that
gives the value of the NAXIS2 keyword in the original uncompressed FITS table header. This
represents the number of rows in the uncompressed table.

• ZPCOUNT (required keyword). The value field of this keyword shall contain an integer that
gives the value of the PCOUNT keyword in the original uncompressed FITS table header.

• ZFORMn (required indexed keywords). These required array keywords supply the character
string value of the corresponding TFORMn keyword that defines the data type of the column
in the original uncompressed FITS table.

• ZTHEAP (optional keyword). The value field of this keyword shall contain an integer that gives
the value of the THEAP keyword if present in the original uncompressed FITS table header.
In practice, this keyword is rarely used.

• ZTILELEN (required keyword). The value of this keyword shall contain an integer representing
the number of rows of data from the original binary table that are contained in each tile of
the compressed table. The number of rows in the last tile may be less than in the previous
tiles. Note that if the entire table is compressed as a single tile, then the compressed table
will only contains a single row, and the ZTILELEN and ZNAXIS2 keywords will have the same
value.

• ZCTYPn (required indexed keywords). The value field of these keywords shall contain a charac-
ter string giving the mnemonic name of the algorithm that was used to compress column n of
the table. The current allowed values are GZIP 1, GZIP 2, and RICE 1, and the corresponding
algorithms are described in Section 5.

• ZHECKSUM (optional keyword). The value field of this keyword shall contain a character string
that gives the value of the CHECKSUM keyword in the original uncompressed FITS table header.

• ZDATASUM (optional keyword). The value field of this keyword shall contain an integer that
gives the value of the DATASUM keyword in the original uncompressed FITS table header.

3



5 Supported Compression Algorithms

This section describes the currently supported compression algorithms. Other compression algo-
rithms may be added in the future.

5.1 GZIP 1

This lossless compression algorithm is designated by the keyword ZCTYPn = ’GZIP 1’. Gzip is the
compression algorithm used in the widely distributed GNU free software utility of the same name.
It was created by Jean-loup Gailly and Mark Adler. It is based on the DEFLATE algorithm,
which is a combination of LZ77 and Huffman coding. Further information about this compression
technique is readily available on the Web. The “gzip -1” option is generally used which significantly
improves the compression speed with only a small loss of compression efficiency.

It is important to note that any numerical data values must be arranged in big-endian byte
order (the FITS standard) before the array of bytes is compressed.

5.2 GZIP 2

This lossless compression algorithm is designated by the keyword ZCTYPn = ’GZIP 2’. This al-
gorithm is a variation of the GZIP 1 algorithm in which the bytes in the arrays of numeric data
columns are preprocessed by shuffling them so that they are arranged in order of decreasing signif-
icance before being compressed. For example, a 5-element array of 2-byte (16-bit) integer values,
with an original big-endian byte order of

A1 A2 B1 B2 C1 C2 D1 D2 E1 E2,

will have the following byte order after shuffling the bytes:

A1 B1 C1 D1 E1 A2 B2 C2 D2 E2.

where A1, B1, C1, and D1 are the most significant bytes from each of the integer values. Byte
shuffling can only be performed for numeric binary table columns that have TFORMn data type
codes of I, J, K, E, D, C, or M. The bytes in columns that have a L, X, or A type code are
never shuffled.

This byte-shuffling technique has been shown to be especially beneficial when compressing
floating-point values because the bytes containing the exponent and the most significant bits of the
mantissa are often similar for all the floating point values in the array. Thus these repetitive byte
values generally compress very well when grouped together in this way. HDF Group has used this
byte-shuffling technique when compressing HDF5 data files (HDF 2000).

5.3 RICE 1

This lossless compression algorithm is designated by the keyword ZCTYPn = ’RICE 1’ and may
only be applied to integer data type columns that have TTYPEn data type code values of ’B’, ’I’,
or ’J’. The Rice algorithm (Rice, 1993) is very simple and fast. It requires only enough memory
to hold a single block of 32 integers at a time and is able to adapt very quickly to changes in the
input array statistics.

4



6 Compressing Variable-Length Array Columns

Compression of binary tables that contain variable-length array (VLA) columns (with a P or Q

data type code) requires special consideration because the data values in these columns are not
stored directly in the table, but instead are stored in what is called the ‘data heap’ which follows
the main table. The VLA column in the main data table itself only contains a ‘descriptor’, which
is composed of 2 integers that give the size and location of the actual array in the heap. When
compressing a variable length array column, one must first process each individual VLA in turn
by reading it from the uncompressed table, compressing it, then writing the compressed bytes to
the heap in the compressed table. The descriptors that point to these compressed VLAs must be
stored in a temporary array of descriptors that has been allocated for this purpose. Once all the
individual VLAs in the column have been processed, that temporary array of descriptors is then
itself compressed with GZIP 1, and then finally written into the heap of the compressed table.

There is one other complexity that must be addressed when dealing with VLA columns: one
needs to know the original descriptor values to be able to write the uncompressed VLAs back
into the same location in the heap as in the original uncompressed table. For this reason, we
concatenate the array of descriptors from the uncompressed table onto the end of the temporary
array of descriptors (to the compressed VLAs in the compressed table) before the 2 combined arrays
of descriptors are compressed and written into the heap in the compressed table.

When uncompressing a VLA column, 2 stages of uncompression must be performed: First, the
combined array of descriptors must be uncompressed, then these descriptors are used one by one
to read the compressed VLA from the compressed table, uncompress it, and then write it back into
the correct location in the uncompressed table. Note also that the descriptors to the compressed
VLAs are always 64-bit Q-type descriptors, but the descriptors from the original uncompressed
table may be either Q-type or P-type.

The following example illustrates how this works in practice: suppose one compresses a 100
row table containing a column of 2-byte integer variable length arrays (with TFORMn = ’1PI’).
When compressing this column, each of the 100 individual VLAs are read from the uncompressed
table, compressed with the appropriate algorithm, and then written to the corresponding TFORMn

= ’1QB’ column in the compressed table. After all the VLAs have been processed, the array of 100
P-type descriptors from the uncompressed table are concatenated onto the end of the temporary
array of 100 ’Q-type descriptors from the compressed table, and this combined array is compressed
with the GZIP 1 algorithm and written into the compressed table.

References
HDF 2000, “Performance Evaluation Report: gzip, bzip2 compression with and without shuffling,”

http://www.hdfgroup.org/HDF5/doc_resource/H5Shuffle_Perf.pdf

Rice, R. F., Yeh, P.-S., and Miller, W. H. 1993, in Proc. of the 9th AIAA Computing in Aerospace
Conf., AIAA-93-4541-CP, American Institute of Aeronautics and Astronautics

White, R. L., Greenfield, P., Pence, W., Tody, D., and Seaman, R. 2009, “Tiled Image Compression
Convention”, http://fits.gsfc.nasa.gov/registry/tilecompression.html

5


